Ucommerce Master Class

Deep Dive
Handouts

Table of Contents

Expertise 1010: Querying

Expertise 1020: Override CatalogContext
Expertise 1030: Extending Pipelines
Expertise 1040: Custom Data Type

Expertise 1050: Override Tax Calculation

10
11

Expertise 1010: Querying

Intro

LINQ to Ucommerce provides rich capabilities to query the data stores of
Ucommerce, but with great power comes great responsibility. This exercise
introduces the three levels of data APlIs.

Relevant APIs
UCommerce.Infrastructure
ObjectFactory.Resolve<T>

UCommerce.EntitiesVv2
IRepository<T>
.Select()
ISessionProvider
.GetSession()

UCommerce.EntitiesV2
Product
PurchaseOrder

.CreatedDate

NHibernate.Ling
EagerFetchingExtensionMethods.Fetch()
EagerFetchingExtensionMethods.FetchMany()

Quyering Excercises

Query for orders created after a certain date.

Intro

Once a customer has placed an order, the checkout pipeline will be executed.
One of the tasks executed in that pipeline will set the CompletedDate property on
the order so CompletedDate can be assumed the exact time the customer has
checked out.

) |Entity
[AuditMeodifiedEntity
[Cloneable<PurchaseCrders

PurchaseCrder A

Class

"y

r
= Properties
& CompletedDate
Mested Types

L
P

Query for products promoted to the homepage
e ProductProperties
e ProductDefinitionField
e “ShowOnHomepage”

Intro

Each product is based on a definition that once saved through the backend will
have a list of properties persisted. Properties will be created based on the
DefinitionFields for the Definition configured on the Product. Properties will
usually reflect attributes for a product like the size or color of a shirt. Properties
can also be used to create more flexible websites, like promoting a product to be
shown on the homepage.

) I1AuditCreatedEntity

lAuditModifiedEntity
IEynamicEntity) 1SoftDeletableEntity
IMamedEntity IDefiniticn
| Product A | | ProductDefinition A |
Class Class
i i
= Properties = Properties
& ProductProperties & ProductDefinitionFields
v [Entity () ISoftDeletableEntity
_ | ey . IDefinitionField
| ProductProperty b I5crtable
Cla ST :
- ; ProductDefinitionField A
- Class
= Properties d
& Product E Proper‘tieg
& ProductDefinitionField E Name
& Value

F# ProductDefinition

Join product to order line on Sku and VariantSku
e Anonymous type for join { orderline.Sku, orderline.VariantSku }

Intro

The catalog foundation and transaction foundation of Ucommerce is
disconnected from each other. Once you add a product to the basket, you do not
store the actual product but information that identifies what the product you are
purchasing is. That is why an Orderline has Sku and VariantSku along with
Product name and pricing information. You also have a collection of properties
available you can use to store additional information regarding the product.

As an effect of the disconnected systems, you cannot navigate to the product
from the orderline. If you wish to access it anyways, you can use Join with LINQ
to query the product associated with the orderline.

() IAuditCreatedEntity

lAuditMedifiedEntity
IDynamicEntity) lAuditCreatedEntity) IEntity
INamedEntity ICloneable<OrderLines [Cloneable<OrderProperty >
| Product A | | OrderLine A | | OrderProperty A |
Class Class Class
I r I
= Properties = pProperties = Properties
& Mame & OrderProperties & Key
& Sku & Price & OrderLine
& VariantSku & ProductName & Value
& Sku
& VariantSku

Expertise 1015: Tuning your Queries

Intro

With LINQ to UCommerce comes great capabilities to query the database for
data. The downside to this is that a lot of magic is happening behind the scenes.
If you're querying products, why are the variants available? How much data is
loaded?

N+1
e Query products
e Foreach over all products
e Access ParentProduct property in foreach
e Observe behavior in SQL Profiler
e How many queries do you see?

Eager Loading to Avoid N+1
e Use Fetch on ParentProduct property on product to tell NHibernate to
initialize
e How many queries do you see?

Cartesian products
e Use Fetch on Product to grab Variants and ProductRelations
e How many queries do you see?
e How does the result set look like?

Large Cartesian Products Avoided
e Set up three queries to load product and variants
e Use ToFuture on LINQ queries to defer execution
e [Execute one query
e How many batches are executed in SQL Server (use the tuning template
in profiler)
e How does the result set look like?

Total Control of SQL with HQL
e Use ISessionProvider to create a query
e Use keyword join, outer join, fetch to control SQL
e \Watch the resulting queries in SQL Profiler (use the tuning template in
profiler)

Expertise 1020: Override CatalogContext

Intro

CatalogContext determines which store, catalog, and price group the customer is
using at any given time. In this exercise, we will override the active catalog based
on whether the customer is logged in or not.

Relevant APIs
UCommerce.Runtime
ICatalogContext
CatalogContext
.CurrentCatalogName

EagerFetchingExtensionMethods.Fetch()
EagerFetchingExtensionMethods.FetchMany()

Steps
New catalog "Private Catalog"

New category "My Private Category"

Add a few products to "My Private Category"

Add new class in business logic, "MyCatalogContext"
Override CurrentCatalogName property

Register MyCatalogContext in an App

Create a new folder in Apps

Remove existing components

Find existing catalog context in Configuration/Core.config
Copy in that component

Change type to use MyCatalogContext

Expertise 1030: Extending Pipelines

Intro

A typical part of ecommerce is integration. Whether it is products being synced in
to the website or orders flowing back to your favorite 3™ party system, proper
integration needs to be done. In this case we want to export the order. In this
exercise we’ll peek into one of the most core concepts of Ucommerce —
Pipelines.

Relevant APIs
UCommerce.Pipelines
IPipelineTask<T>

UCommerce.EntitiesV2
PurchaseOrder
OrderNumber

Steps
Create a new class for the pipeline task called "ExportOrderToErpSystem"

Register in new app called " ExportOrderToErpSystem " using a component
Hook into ToCompleted pipeline using partial-component

Use File I/O to write the OrderNumber into a text file.

<configuration>
<components>
<partial-component id="ToCompletedOrder">
<parameters>
<tasks>
<array>
<value insert="last">${ToCompletedOrder.ExportOrderToErpSystem}</value>
</array>
</tasks>
</parameters>
</partial-component>
</components>
</configuration>

Expertise 1040: Custom Data Type

Intro

When you need to be able to control how fields on products and categories are

edited, a custom data type is just the thing. In this exercise you will create a new
editor to set up tax groups on a per product level to support differentiated tax per

product.

Relevant APIs

UCommerce.Presentation.Web.Controls
IControlFactory
IControlAdapter

UCommerce.EntitiesV2
DataType

PriceGroup
IRepository<T>

Steps
Create a new class called "PriceGroupFactory"

Implement IControlFactory

Register component in a new app called "Differential Tax"

Set up a new data type in Ucommerce back-end in settings

Pick the Price Group component

Create a new field on a product definition using the new data type

Edit a product with the

10

Expertise 1050: Override Tax Calculation

Intro

To support products with individual tax set we need to override ITaxService to
make it take the product setting into account rather than the default tax info from
the price group.

Relevant APIs

UCommerce.Catalog
ITaxService
TaxService

UCommerce.EntitiesV2
Product
PriceGroup

UCommerce.Extensions
DynamicProperty<T>()

Steps
Set up a field with the PriceGroupControlFactory

Set a custom price group on a product

Inherit TaxService and override the CalculateTax method
Check the product for the field (take into account variants)
Load the price group based on the id stored in the field

Calculate tax based on the loaded price group

11

